872 research outputs found

    Deterministically entangling distant nitrogen-vacancy centers by a nanomechanical cantilever

    Full text link
    We present a practical scheme by global addressing to deterministically entangle negatively charged nitrogen-vacancy (N-V) centers in distant diamonds using a nano-mechanical cantilever with the magnetic tips strongly coupled to the N-V electron spins. Symmetric Dicke states are generated as an example, and the experimental feasibility and challenge of our scheme are discussed.Comment: 5 pages, 4 figure

    The steering gaits of sperm

    No full text
    Sperm are highly specialized cells, which have been subject to substantial evolutionary pressure. Whereas some sperm features are highly conserved, others have undergone major modifications. Some of these variations are driven by adaptation to mating behaviours or fitness at the organismic level. Others represent alternative solutions to the same task. Sperm must find the egg for fertilization. During this task, sperm rely on long slender appendages termed flagella that serve as sensory antennas, propellers and steering rudders. The beat of the flagellum is periodic. The resulting travelling wave generates the necessary thrust for propulsion in the fluid. Recent studies reveal that, for steering, different species rely on different fundamental features of the beat wave. Here, we discuss some examples of unity and diversity across sperm from different species with a particular emphasis on the steering mechanisms. This article is part of the Theo Murphy meeting issue ‘Unity and diversity of cilia in locomotion and transport’

    Ab-initio theory of NMR chemical shifts in solids and liquids

    Full text link
    We present a theory for the ab-initio computation of NMR chemical shifts (sigma) in condensed matter systems, using periodic boundary conditions. Our approach can be applied to periodic systems such as crystals, surfaces, or polymers and, with a super-cell technique, to non-periodic systems such as amorphous materials, liquids, or solids with defects. We have computed the hydrogen sigma for a set of free molecules, for an ionic crystal, LiH, and for a H-bonded crystal, HF, using density functional theory in the local density approximation. The results are in excellent agreement with experimental data.Comment: to appear in Physical Review Letter

    Bimetallic Carbonyl Complexes Based on Iridium and Rhodium: Useful Tools for Hydrodefluorination Reactions

    Get PDF
    A set of bimetallic complexes based on iridium and rhodium with bis(diphenylphosphino)methane, bis(di‐iso‐propylphosphino)methane, diphenyl‐2‐pyridylphosphine and 2‐(di‐iso‐propylphosphino)imidazole bridging ligands was prepared. The complexes were characterized by NMR and IR spectroscopy and studied quantum‐chemically using DFT methods. The bimetallic systems succeeded in catalytic hydrodefluorination reactions of lower fluorinated aryl fluorides using molecular hydrogen and sodium tert‐butoxide as a base. Effects of (i) ligand variation, (ii) mono‐ vs bimetallic nuclearity, and (iii) Ir vs Rh metal identity were studied and rationalized en route to achieve an effective hydrodefluorination.Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)Peer Reviewe

    Tetrakis(ferrocenylethynyl)ethene:synthesis, spectro)electrochemical and quantum chemical characterisation

    Get PDF
    Tetrakis(ferrocenylethynyl)ethene (1) has been prepared in four steps from ethynyl ferrocene (2). In a dichloromethane solution containing 10–1 M NBu4[PF6], only a single oxidation process is observed by cyclic voltammetry, corresponding to the independent oxidation of the four ferrocenyl moieties. However, in dichloromethane containing 10–1 M NBu4[BArF4] electrolyte, where [BArF4]– is the weakly associating anion [B{C6H3(CF3)2-3,5}4]–, four distinct oxidation processes are resolved, although further spectroelectrochemical investigation revealed essentially no through bond interaction between the individual ferrocenyl moieties. Quantum chemical treatment of 1 identified several energetic minima corresponding to different relative orientations of the ferrocenyl moieties and the plane of the all-carbon bridging fragment. Further computational investigation of the corresponding monocation [1]+ supported the notion of charge localisation with no evidence for significant through bond electronic interactions

    All-electron magnetic response with pseudopotentials: NMR chemical shifts

    Full text link
    A theory for the ab initio calculation of all-electron NMR chemical shifts in insulators using pseudopotentials is presented. It is formulated for both finite and infinitely periodic systems and is based on an extension to the Projector Augmented Wave approach of Bloechl [P. E. Bloechl, Phys. Rev. B 50, 17953 (1994)] and the method of Mauri et al [F. Mauri, B.G. Pfrommer, and S.G. Louie, Phys. Rev. Lett. 77, 5300 (1996)]. The theory is successfully validated for molecules by comparison with a selection of quantum chemical results, and in periodic systems by comparison with plane-wave all-electron results for diamond.Comment: 25 pages, 4 tables, submitted to Physical Review

    Electronic structure of fluorides: general trends for ground and excited state properties

    Full text link
    The electronic structure of fluorite crystals are studied by means of density functional theory within the local density approximation for the exchange correlation energy. The ground-state electronic properties, which have been calculated for the cubic structures CaF2CaF_{2},SrF2SrF_{2}, BaF2BaF_{2}, CdF2CdF_{2}, HgF2HgF_{2}, ÎČ\beta -PbF2PbF_{2}, using a plane waves expansion of the wave functions, show good comparison with existing experimental data and previous theoretical results. The electronic density of states at the gap region for all the compounds and their energy-band structure have been calculated and compared with the existing data in the literature. General trends for the ground-state parameters, the electronic energy-bands and transition energies for all the fluorides considered are given and discussed in details. Moreover, for the first time results for HgF2HgF_{2} have been presented

    Correlation effects in MgO and CaO: Cohesive energies and lattice constants

    Full text link
    A recently proposed computational scheme based on local increments has been applied to the calculation of correlation contributions to the cohesive energy of the CaO crystal. Using ab-initio quantum chemical methods for evaluating individual increments, we obtain 80% of the difference between the experimental and Hartree-Fock cohesive energies. Lattice constants corrected for correlation effects deviate by less than 1% from experimental values, in the case of MgO and CaO.Comment: LaTeX, 4 figure

    Structure of the Nucleotide Radical Formed during Reaction of CDP/TTP with the E441Q-α2ÎČ2 of E. coli Ribonucleotide Reductase

    Get PDF
    The Escherichia coli ribonucleotide reductase (RNR) catalyzes the conversion of nucleoside diphosphates to deoxynucleotides and requires a diferric-tyrosyl radical cofactor for catalysis. RNR is composed of a 1:1 complex of two homodimeric subunits: α and ÎČ. Incubation of the E441Q-α mutant RNR with substrate CDP and allosteric effector TTP results in loss of the tyrosyl radical and formation of two new radicals on the 200 ms to min time scale. The first radical was previously established by stopped flow UV/vis spectroscopy and pulsed high field EPR spectroscopy to be a disulfide radical anion. The second radical was proposed to be a 4â€Č-radical of a 3â€Č-keto-2â€Č-deoxycytidine 5â€Č-diphosphate. To identify the structure of the nucleotide radical [1â€Č-[superscript 2]H], [2â€Č-[superscript 2]H], [4â€Č-[superscript 2]H], [5â€Č-[superscript 2]H], [U−[superscript 13]C, [superscript 15]N], [U−[superscript 15]N], and [5,6 -[superscript 2]H] CDP and [ÎČ-[superscript 2]H] cysteine-α were synthesized and incubated with E441Q-α2ÎČ2 and TTP. The nucleotide radical was examined by 9 GHz and 140 GHz pulsed EPR spectroscopy and 35 GHz ENDOR spectroscopy. Substitution of [superscript 2]H at C4â€Č and C1â€Č altered the observed hyperfine interactions of the nucleotide radical and established that the observed structure was not that predicted. DFT calculations (B3LYP/IGLO-III/B3LYP/TZVP) were carried out in an effort to recapitulate the spectroscopic observations and lead to a new structure consistent with all of the experimental data. The results indicate, unexpectedly, that the radical is a semidione nucleotide radical of cytidine 5â€Č-diphosphate. The relationship of this radical to the disulfide radical anion is discussed.National Institutes of Health (U.S.) (GM29595)(EB002804)(EB002026

    Reconstruction of the birth of a male sex chromosome present in Atlantic herring

    Get PDF
    The mechanisms underlying sex determination are astonishingly plastic. Particularly the triggers for the molecular machinery, which recalls either the male or female developmental program, are highly variable and have evolved independently and repeatedly. Fish show a huge variety of sex determination systems, including both genetic and environmental triggers. The advent of sex chromosomes is assumed to stabilize genetic sex determination. However, because sex chromosomes are notoriously cluttered with repetitive DNA and pseudogenes, the study of their evolution is hampered. Here we reconstruct the birth of a Y chromosome present in the Atlantic herring. The region is tiny (230 kb) and contains only three intact genes. The candidate male-determining gene BMPR1BBY encodes a truncated form of a BMP1B receptor, which originated by gene duplication and translocation and underwent rapid protein evolution. BMPR1BBY phosphorylates SMADs in the absence of ligand and thus has the potential to induce testis formation. The Y region also contains two genes encoding subunits of the sperm-specific Ca2+ channel CatSper required for male fertility. The herring Y chromosome conforms with a characteristic feature of many sex chromosomes, namely, suppressed recombination between a sex-determining factor and genes that are beneficial for the given sex. However, the herring Y differs from other sex chromosomes in that suppression of recombination is restricted to an similar to 500-kb region harboring the male-specific and sex-associated regions. As a consequence, any degeneration on the herring Y chromosome is restricted to those genes located in the small region affected by suppressed recombination
    • 

    corecore